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A method of solving the periodic contact problem for a system of indentors of arbitrary shape and an elastic half-space is proposed. 
Different versions of the arrangement of the indentors, at one and at several levels, are considered. The results are used to analyse 
the effect of the parameters of the mierogeometry of the characteristics of a discrete contact and the stressed state of solids 
possessing regular microrelief. © 1999 Elsevier Science Ltd. All rights reserved. 

The contact problem in its classical formulation assumes that the surface is ideally smooth and that the 
contact area is continuous. In fact, the contact area is discrete, due to the existence of surface microrelief. 
To investigate the effect of the microrelief on the stress-strain state of the surface layers of solids in 
contact interaction, we need to solve the problem of multiple contact, i.e. the mixed problem of the 
mechanics of a deformed solid for a system of contact spots, comprising the actual contact area of the 
surfaces having the microrelief. Numerical methods are usually employed to solve this problem [1, 2], 
in which case the error in determining the stress-strain state of solids depends on the accuracy with 
which the function describing the geometry of the surfaces of the contacting solids is specified, and the 
accuracy of the computational methods employed. 

In the mechanics of contact interaction between rough solids, modelling of the rough surface of a 
system of spherical segments of the same radius (roughness), the height of which is taken to be a random 
quantity having a certain distribution law, is widely used to calculate the characteristics of the discrete 
contact. It is assumed that each asperity is elastically deformed in accordance with Hertz's theory. The 
effect of the other asperities is estimated by means of an average (nominal) pressure [3, 4]. As will be 
shown below, this approach may lead to calculation errors at high contact densities, when the penetration 
of an individual asperity depends considerably on the distribution of the pressures on the contact spots 
in its neighbourhood. 

For surfaces with regular relief (for example, a wavy surface) methods of solving periodic contact 
problems can be employed to investigate the stressed state. Periodic contact problems for elastic solids 
were considered in the plane formulation in [5-8], and also for a surface having a sinusoidal waviness 
in two mutually perpendicular directions in [9]. 

In this paper we present a solution of the periodic contact problem for a system of elastic indentors 
of arbitrary shape, which model the microgeometry of one of the contacting surfaces, and an elastic 
half-space, by means of which we analyse the effect of the parameters of the surface geometry on the 
characteristics of the discrete contact (the pressures and the contact area) and the stress-concentration 
points in the surface layers of interacting solids. 

1. F O R M U L A T I O N  OF THE P R O B L E M  F O R  A S I N G L E - L E V E L  
SYSTEM OF I N D E N T O R S  

Consider a system of similar axisymmetrical elastic indentors, the shape of the contacting surfaces 
of which is described by the function z = f ( r ) ,  which interact without friction with an elastic half-plane 
(Fig. 1). The axes of the indentors are perpendicular to the boundary of the half-space z = 0, while 
their points of intersection with the boundary are uniformly distributed in the z = 0 plane and have 
coordinates (ri, Oij) (i = 1, 2 . . . .  ; j = 1, 2 . . . .  mi ,  where mg is the number of indentors located on a 
circumference of radius ri, ri < ri+ l).  

To determine the pressure distribution on an arbitrary contact spot we will use the solution of the 
contact problem, obtained by Galin [10], of the penetration of an axisymmetric punch (z = f ( r ) )  into 
an elastic half-space when a specified load q(r ,  0) acts on the boundary of the half-spaces outside the 
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Fig. 1. 

punch. The expression for the pressure p(r, 0) inside the contact area r ~< a, extend to the case of the 
contact between two elastic solids, has the form 

p(r, O)=G(r)+ - ] q(r', O')H2(r, O, r', O')r'dr'dO" 
0 

(1.1) 

where 

_e*'r 
G(r)- 4• 2 SO Af(r')Hl(r, r')dr' 

2, 2r' ~ a 2 - r  2 ~ a 2 - r  '2 
Hi(r, r')= ~ o e(r, r', 0")arctg aR(r, r', e') dO' 

H2(r, O, r', 0")= r ~ - a 2  
~t2~a2-r2R2(r, r', 0-O') 

R(r, r', O')=4r2-2rr'cosO'+r "2, E * = (  I-v2E, +l-v~y'E2 ) 

(1.2) 

and El, v1 and E2, v2 are the moduli of elasticity of the materials of the indentors and of the half-space 
respectively. The function c(0) depends on the indentor shaper(r). For a smooth indentor (the function 
fl(r) is continuous when r ~< a), in view of the condition that the pressure at the edge of the contact 
area should be zero, i.e. p(a, 0) = 0, the function c(0) has the form 

+** 2x  

c(O) = ] I q(r', e')H2(a, O, r', O')r'dr'de" (1.3) 
a 0 

Taking into account the fact that, in the periodic problem considered, the load is produced by the 
same indentors, and assuming that the pressure under each indentor is distn"outed inside a circular contact 
area of radius a, we obtain the following integral equation for determining the contact pressure p(r, O) 

a2z 
p(r, O)-~ ~ K(r, O, r', O')p(r', O')r'dr'dO'=G(r) (1.4) 

OO 

where 

K(r, e, r', 0')= ~_, Ki(r, O, r', e') (].5) 
i=1 

Ki(r, O, r', 0 )= Z O, r'. ' 0")1 n'~a--r'~"'f"l"~"'~ ~ J:l [r i j(a" O ' ) - r u ( r ,  e, r .  (1.6) 
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Kij(r, 0, r', 0")=L(r/, r', O#-0')L(r, O, r', 0", ri, Oij ) 

L(r/, r', (p) =452 + r  '2 +2r / r ' cosg -a  2 

Z(r, O, r', 0", x, 9) = [ ( rcos0-  r'cosO'-xeostp) 2 + ( r s i n 0 -  r 's in0'-xsintp)2] -I 

In deriving relation (1.4) we assumed that the indentors have a smooth shape and, consequently, p(a, 
0) -- 0 (the radius a of the contact area in this case is not known in advance). 

Note, however, that similar considerations also apply to punches with a fixed size of the contact area 
(for example, cylinders with a flat base). As a result, an equation will be obtained which is identical in 
its structure with Eq. (1.4). 

The kernel K(r, 0, r', 0') of integer equation (1.4) can be represented in the form of the infinite series 
(1.5). The general term (1.6) of this series can be converted to the form 

1 m, {2(a-  r) co s ( 0 0  - O)r/-2 + Ki(r, O, r', O ' ) = / t 2 ~ j = , ~  I 

+ (a  - r ) [ - a  - r - 6 r '  cos(O# - O') cos(Oij - O) + 2 r '  cos(O" - O) ] r f  a + O ( r f  4 ) } 

Since, in the case of the periodic problem, for any indentor situated at the point (ri, 0ii), there is 
one situated symmetrically to it at the point (ri, n + 0iy), the first term in the braces is equal to 

2 zero. Since m i ~ r i, the general term of series (1.5) is of the order of r- and, consequently, this series 
converges. 

2. THE LOCALIZATION METHOD 

Together with integral equation (1.4) we will consider the equation 

a2x n 

p(r, 0 ) - J  [ Y. Ki(r, O, r', 0')p(r', O')r'dr'dO'=G(r)+NPQ(r, An) (2.1) 
0 0 i=1 

a2x 2 . ~ a  2 --  r 2 
P=S S p(r, O)rdrdO; Q(r, A,)=--aretg . t - - - - . .  

0 O X ~,IA,~ - a  z 

where Nis the average number of contact spots per unit area, P is the load acting on each contact spot, 
and the meaning of the quantity An will be explained below. 

Equation (2.1) is obtained from (1.4) by replacing the summation when i > n in (1.5) by integration 
over the area (f2, : ri >i An, 0 <~ Oij <~ 2n), taking into account the fact that the centres of the contact 
spots (ri, 0/y) are uniformly distributed over D n. In fact 

+** 2x L(x, r', t p - O ' )  
J.= ~, Ki(r, O, r', O ' )=N ~ ~ n2 a2%]-a-Y-_r 2 x 

i : n + l  A n 0 

x[Z,(a, 0, r', 0', x, (p)-~(r, 0, r', 0', x, tp)]xdxdtp 

Making the replacement of variables 

ycos~  = xcos~o + r 'cos0' 

ysin V = xsin (p + r'sin 0" 

and bearing in mind the fact that r' ~< a ~ A,, we finally obtain 

a l a - - r "  ,% 0 R2(a, Y, ~)  R2(r, y, ~ )  l(n) 
= NO(r. A,), A~ ray ~=~ ="'~'~ ~, mi-I-I 
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(An is the radius of the circle in which ml + m2 + • • • +mn + 1 central indentors are situated). 
Note that, owing to the choice of n, the solution of Eq. (2.1) can approximate as closely as desired 

to the solution of the initial equation (1.4). 
We will consider the structure of Eq. (2.1) in more detail. The integral term on the left-hand side 

of Eq. (2.1) takes into account the effect on the pressure distribution at a fixed contact spot of 
the pressures on the contact spots lying close to it (the short-range effect). The effect of the load, 
distributed over the more distant contact spots, is taken into account by the second term on the 
right-hand side, which describes the additional pressure in the circular region (r ~< a) when a nominal 
pressure/5 = PN acts outside it (in the region r > An). It follows in fact from relations (1.1) and 
(1.3) that if the pressure is distributed uniformly outside a circle of radiusAn, i.e. q(r, 0) =/5, it produces 
on the contact area (r ~< a) of the indentor with the elastic half-space an additional pressure 

pa(r) = ~Q(r, An) 

Hence, in periodic contact problems the contact pressure on contact spots far from the one considered 
(in the region D.n) can be taken into account with a certain degree of accuracy by considering the nominal 
pressure/5 in this region. 

This result is a special case of a more general assertion, which we will call the localization method: under 
conditions of multiple contact the stress-strain state of interacting solids in the region of an individual 
contact spot can be determined, with a fair degree of accuracy, by taking into account the contact conditions 
on the contact spot considered and on those contact spots lying close to it (in the local neighbourhood 
of the spot), and the surface-averaged (nominal) pressure on the remaining part of the interaction region 
(the nominal contact area). The correctness of this assertion has also been confirmed in [11] in an 
investigation of the problem of multiple contact with a limited nominal contact region. 

Relations (2.1) are used to determine the pressure p(r, 0) on each contact spot and the radius a of 
the contact spot. Then, using the known pressures at the boundary of the elastic half-space, the stressed 
state in the subsurface region is determined. To determine the stresses in the half-space one can use 
the Boussinesq solution as Green's function (see, for example, [12]). 

3. A D I V E R S E - L E V E L  SYSTEM OF I N D E N T O R S  

The method of solving periodic contact problems for an elastic half-space proposed above can be 
used to investigate the contact characteristics when indentors of various heights penetrate into an elastic 
half-space. Suppose the shapes of the contacting surfaces of the indentors are described by smooth 
functions z = fra(r) + hm, where the quantity hm(m = 1, 2 . . . .  k) specifies the height of each level of 
the system of indentors, and k is the number of levels. We will assume that the contact spot at the m- 
th level is a circle of radius am. An example of the arrangement at nodal points of an hexagonal array 
of indentors of each level for k = 3 is shown in Fig. 2(a). 

We fix an arbitrary contact spot of an m-th level indentor and we place the origin of a polar system of 
coordinates at its centre (see Fig. 2b). Using the localization method, we focus our attention on the 
distribution of the pressurepj(r, 0) (j = 1, 2 . . . . .  k) on all the contact spots insidea circle (r <- Am)  , where 

where ~ is the density of the arrangement ofjth level indentors, defined as the number of indentors 
per unit area, and kin is the number ofjth level indentors inside the circle (r <~ Am) (when j = m the 
number of indentors is kmm + 1). Replacing the actual pressures at distant contact spots (ri > Am) by 
the nominal pressure/5 acting in the region (ri > Am), where 

k aj 2x 
"ff = ~ Nj I I pj(r, O)rdrdO 

j=l  0 0 

by analogy with (2.1) we obtain the relation 

k aj 2x 
p,n(r, 8 ) - T .  ~ ~ Kjm(am, r, e, r', O')pj(r', O')r'dr'dO'= 

j=l o o 
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(b) 

Fig. 2. 

Gra(r)+ 2.2~arctg ~ F-~" - r~ 
~"  ' 2 

(3.1) 

The kernel of Eq. (3.1) has the form 
njm 

Kjra(ara, r, O, r', 0')= g Ki(r, O, r', 0") 
i=1 

The functions Ki(r, 0, r', 0') and Kq(r, 0, r', 0') are given by (1.6), in which we must put a = am; njm is 
the number of layers of thejth level indentors inside the circle of radiusA,n. The function Gm is given 
by relation (1.2) in which a = a,n a n d f  = fro. 

Writing relations (3.1) for the indentors of each mth level, we obtain a system of integral equations 
for determining the unknown contact pressures pm(r, O) (m = 1, 2 , . . . ,  k). 

The unknown radii a m of the contact spots are determined from the specified heights of the indentors 
h,n from the formula 

hra = - ~  o] pra(r, O)drdO+21r~(A..-Ara)+~,./=l i=IE o o R(r, ro ' ° - °u )J  (3.2) 

where rq, Oij are the coordinates of the centres of the indentors of all levels, situated inside the region 
(am < rq < Am, 0 < 0ij < 2n). To eliminate the constantA~, the system of equations (3.2) is set up for 
differences in the heights of the indentors h 1 - hm, where hl is the height of the highest indentor. To 
close the system of equations (3.2) we use the equilibrium equation 

k aj2x a m  

p~A~ = Z k.ira I I pj(r, O)rdrdO+ I I pra(r, O)rdrdO (3.3) 
j=l 0 0 0 0 

It should be noted that for specified hm all the indentors of the system participate in the contact only 
for a certain value of the nominal pressure/3*. When/5 </5* a smaller number of levels of the system 
of indentors will participate in the contact. 

4. ANALYSIS OF THE STRESSED STATE 

We will use the relations obtained above to analyse the contact characteristics and the stressed state 
of an elastic half-space under multiple contact conditions. Particular attention will be given to investi- 
gating the effect of the geometrical parameter, related to the indentor density, on the characteristics 
being investigated, which enables us to estimate the limits of applicability of the simplified theories, 
ignoring the interaction between individual contact spots. 

Numerical calculations were carried out for a system of spherical indentors (f(r) = r2/(2R) where R 
is the radius of curvature of an indentor), placed at the nodal points of an hexagonal mesh with pitch 
l. For a diverse-level system of indentors we took k = 3 (Fig. 2). 

We introduce the following dimensionless functions and parameters 
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The systems of equations (2.1) for the single-level model and (3.1)-(3.3) for a diverse-level model 
were solved by iteration. The density of arrangements of the indentors of each level was calculated from 
the formula 

N--j = 2/(l 2 

To estimate the accuracy of the localization method and to choose the value ofn  which gives an error 
of the results to within a specified degree of accuracy, we calculated the contact pressure p'(p, 0) for 
a single-level system of indentors with a different value of n, characterizing the number of layers of 
indentors lying dose to the indentor considered, on the contact spots of which the pressure distribution 
is taken into account. Thus, for n = 1 we take into account the pressures, distributed over the contact 
spots, a distance l from the spot considered (six spots, one layer), for n = 2 we take into account 12 
spots, a distance I from the spot considered (the first layer) and N3 (the second layer), etc. The results 
of the calculations for a '  = 0.1 and 1' = 0.2 (a/l = 0.5, which corresponds to the limiting case of close 
contact) and n = 0, n = 1 and n = 2, are shown in Fig. 3. The results show that the pressure distributions, 
calculated for n = 1 and n = 2, differ by less than 0.1%. This estimate improves as a/l increases. Hence, 
as a rule we took n = 1 for further calculations. 

Figure 4 shows the contact pressure under an individual indentor, which is under a load P' = 0.0044 
when l' = 1 (curve 1), 1' = 0.25 (curve 2) and 1' = 0.2 (curve 3) for a single-level system of indentors. 
The results show that, as the distance I between the indentors is reduced, the radius of an individual 
contact spot is reduced and the maximum pressures on the contact spots increase, and the contact density, 
characterized by the parameter a/l, increases (a/l = 0.128 (curve 1), a/l = 0.45 (curve 2) and a/1 = 0.5 
(curve 3)). Curve 1 practically coincides with the pressure distribution calculated using Hertz's theory, 
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so that we can conclude that for small values of aft one can neglect the mutual influence of the contact 
spots when calculating the real pressures. 

Curves of the radius of a contact spot against the dimensionless nominal pressure/3' =/3u/(2E*), drawn 
for 1' = 1, (curve 1), 1' -- 0.5 (curve 2) and 1' = 0.2 (curve 3), are shown in Fig. 5. For comparison the 
dashed curves show the corresponding results obtained using Hertz's theory. The calculations show that 
for a constant nominal pressure/3, as the relative distance between the indentors l/R decreases, the radius 
of an individual contact spot and, consequently, the contact area, also decreases. We can conclude from 
a comparison with the Hertz curves that for a/l < 0.25, the difference in the contact area obtained using 
the method proposed here and using Hertz's theory does not exceed 2.5%. For larger nominal pressures 
and, consequently, high contact densities this difference becomes extremely large. Thus, for 1' = 0.5 
(curves 2) and a/l = 0.44, the error in calculations using Hertz's theory is 15%. 

It is of interest to investigate the contact characteristics for a diverse-level system of indentors, since, 
in view of the mutual effect of the indentors, taken into account in this model, the instant each new 
level of indentors enters into contact is determined not only by the nominal pressure and height of an 
indentor, but also by the density of the contact spots, which have a considerable effect on the curvature 
of the half-space boundary between contact spots. We made calculations for a system of indentors with 
a fixed difference between the heights of the different levels: (hi - h2)/R = 0.014 and (h  1 - h 3 ) / R  = 
0.037. In Fig. 6 we show graphs of the distribution of the pressure on the contact spots of each level 
for an overall load on three indentors of 0.059. The continuous curves 1, 2, and 3 are drawn on the 
basis of the solution of the periodic problem for indentors of each level with heights of hi, h2, h3 
respectively, while the dashed curves were obtained using Hertz's theory. The calculations show that 
the lower the height of the indentor the more the radius of the contact spot and the pressure distribution 
on it differ from the corresponding results of Hertz's theory. 
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An investigation of the stressed state inside the elastic half-space when it interacts with the system 
of single-level indentors showed that an increase in the stresses occur in a surface layer whose thickness 
is comparable with half a period, and the value of the stresses in this layer depend very much on a/l. 
In Fig. 7 we show graphs of the principal sheer stresses Xmax//3 as a function of the depth z/R, calculated 
for different values of / '  and/3' = 0.12. Curves 1, l' and 2, 2' are drawn for l' = 1 (a' = 0.35) and l' = 
0.5 (a' = 0.21) respectively, on the Oz axis, passing through the centre of a contact spot (curves 1 and 
2), and along the O'z axis (see Fig. 1), passing through the centre of the unloaded zone (curves 1' and 
2'). The calculations showed that the internal stresses only depend appreciably on the contact density 
parameter a/l for fairly large relative dimensions of the contact spot 0.25 < a/l <- 0.5. When a/l increases, 
the maximum values of the principal shear stresses fall, while the point at which they are reached 
approaches the boundary. In this case the drop in the stresses at a fixed depth decreases. The limiting 
values of the stresses as z ~ ~ are determined by the value of the nominal contact pressures/3. 

In Fig. 8 we show isolines of the function Xmax/D in the Oxy plane, at a depth ofz /R = 0.08, where the 
principal shear stresses are close to their greatest values. The isolines are drawn in a section of the plane 
(-/'/2 < x < l', -l'x/(3)/4 < y < l'~/(3)/2) for the case when a' = 0.2 and 1' = 1 (Fig. 8a), and 1' = 0.4 
(Fig. 8b). The results show that when the contact density increases the value of principal shear stresses 
at a fixed depth change only slightly. A similar conclusion can be reached with respect to all the stress 
components. 

Hence, an increase in the contact density leads to the occurrence of a stressed subsurface layer at a 
certain depth. The stress concentration in this layer may lead to the development of plastic deformations 
and the microcrack formation in it. The results obtained agree qualitatively with the conclusions reached 
in [8] when investigating the contact interaction of a sinusoidal punch with an elastic half-plane. 
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